Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research presents the prediction of temperatures in the chamber of a solar dryer using artificial neural networks (ANN). The dryer is a forced-flow type and indirect. Climatic conditions, temperatures, airflow, and geometric parameters were considered to build the ANN model. The model was a feed-forward network trained using a backpropagation algorithm and Levenberg–Marquardt optimization. The configuration of the optimal neural network to carry out the verification and validation processes was nine neurons in the input layer, one in the output layer, and two hidden layers of thirteen and twelve neurons each (9-13-12-1). The percentage error of the predictive model was below 1%. The predictive model has been successfully tested, achieving a predictor with good capabilities. This consistency is reflected in the relative error between the predicted and experimental temperatures. The error is below 0.25% for the model’s verification and validation. Moreover, this model could be the basis for developing a powerful real-time operation optimization tool and the optimal design for indirect solar dryers to reduce cost and time in food-drying processes.

Details

Title
Dynamic Behavior Forecast of an Experimental Indirect Solar Dryer Using an Artificial Neural Network
Author
Becerro, Angel Tlatelpa 1   VIAFID ORCID Logo  ; Ramiro Rico Martínez 2   VIAFID ORCID Logo  ; López-Vidaña, Erick César 3   VIAFID ORCID Logo  ; Esteban Montiel Palacios 4 ; César Torres Segundo 4   VIAFID ORCID Logo  ; Gadea Pacheco, José Luis 4 

 Departamento de Ingeniería en Robótica y Manufactura Industrial, Escuela de Estudios Superiores de Yecapixtla, Universidad Autónoma del Estado de Morelos, Yecapixtla 62824, Mexico 
 Tecnológico Nacional de México, I.T. Celaya, Celaya 38000, Mexico 
 Consejo Nacional de Humanidades, Ciencias y Tecnología, Centro de Investigación en Materiales Avanzados S.C., Durango 34147, Mexico; [email protected] 
 Escuela de Estudios Superiores de Xalostoc, Universidad Autónoma del Estado de Morelos, Ayala 62725, Mexico; [email protected] (E.M.P.); [email protected] (C.T.S.); [email protected] (J.L.G.P.) 
First page
2423
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
26247402
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904632381
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.