Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A large number of experimental studies have demonstrated that globular proteins can be absorbed from the solution by both polycationic and polyanionic brushes when the net charge of protein globules is of the same or of the opposite sign with respect to that of brush-forming polyelectrolyte chains. Here, we overview the results of experimental studies on interactions between globular proteins and polycationic or polyanionic brushes, and present a self-consistent field theoretical model that allows us to account for the asymmetry of interactions of protein-like nanocolloid particles comprising weak (pH-sensitive) cationic and anionic groups with a positively or negatively charged polyelectrolyte brush. The position-dependent insertion free energy and the net charge of the particle are calculated. The theoretical model predicts that if the numbers of cationic and anionic ionizable groups of the protein are approximately equal, then the interaction patterns for both cationic and anionic brushes at equal offset on the “wrong side” from the isoelectric point (IEP), i.e., when the particle and the brush charge are of the same sign, are similar. An essential asymmetry in interactions of particles with polycationic and polyanionic brushes is predicted when fractions of cationic and anionic groups differ significantly. That is, at a pH above IEP, the anionic brush better absorbs negatively charged particles with a larger fraction of ionizable cationic groups and vice versa.

Details

Title
Interaction of Polyanionic and Polycationic Brushes with Globular Proteins and Protein-like Nanocolloids
Author
Popova, Tatiana O 1   VIAFID ORCID Logo  ; Zhulina, Ekaterina B 2   VIAFID ORCID Logo  ; Borisov, Oleg V 3 

 Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia; [email protected]; Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia; [email protected] 
 Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia; [email protected] 
 Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia; [email protected]; Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia; [email protected]; CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, 64053 Pau, France 
First page
597
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23137673
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904635588
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.