Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study utilized the mallard’s foot as the subject, examining the bone distribution via computed tomography (CT) and analyzing pertinent parameters of the tarsometatarsal bones. Additionally, gross anatomy methods were employed to elucidate the characteristics of the toes and webbing bio-structures and their material composition. Biologically, the mallard’s foot comprises tarsometatarsal bones and 10 phalanges, enveloped by fascia, tendons, and skin. Vernier calipers were used to measure the bones, followed by statistical analysis to acquire structural data. Tendons, originating in proximal muscles and terminating in distal bones beneath the fascia, facilitate force transmission and systematic movement of each segment’s bones. Regarding material composition, the skin layer serves both encapsulation and wrapping functions. Fat pads, located on the metatarsal side of metatarsophalangeal joints and each phalanx, function as cushioning shock absorbers. The correlation between the force applied to the tarsometatarsal bones and the webbing opening angle was explored using a texture analyzer. A simplified model describing the driving force behind the webbing opening angle was introduced. Furthermore, we designed a bionic foot, contributing a foundational reference for anti-sinking bionic foot development.

Details

Title
From the Analysis of Anatomy and Locomotor Function of Biological Foot Systems to the Design of Bionic Foot: An Example of the Webbed Foot of the Mallard
Author
Han, Dianlei  VIAFID ORCID Logo  ; Liu, Hairui  VIAFID ORCID Logo  ; Ren, Lizhi  VIAFID ORCID Logo  ; Hu, Jinrui  VIAFID ORCID Logo  ; Yang, Qizhi
First page
592
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23137673
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904643518
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.