Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Non-linear distortion of signals is a serious problem in computing-in-memory SRAM (CIM-SRAM) circuits in current mode. This problem greatly limits the performance of calculations and directly affects the computing power of the CIM-SRAM. In this study, the causes of non-linearity and inconsistency were investigated. Based on detailed analyses, we proposed a high-precision, fully dynamic range IV (HFIV) conversion circuit. The HFIV circuit was added to each bit line (BL) for voltage clamping and proportionally mirroring the read current. We applied the structure to numerous prior studies and evaluated them using the 55 nm complementary metal-oxide semiconductor process. The results showed the proposed HFIV circuit could increase the CIM-SRAM’s calculation linearity to 99.92% (8~32 SRAM bit-cells) and 99.8% (32~64 SRAM bit-cells) with a 1.2 V supply.

Details

Title
A High-Precision Voltage-Quantization-Based Current-Mode Computing-in-Memory SRAM
Author
Zhao, Ruiyong 1 ; Gong, Zhenghui 2 ; Liu, Yulan 1 ; Chen, Jing 2 

 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200031, China; [email protected] (R.Z.); [email protected] (Y.L.); University of Chinese Academy of Sciences, Beijing 100049, China 
 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200031, China; [email protected] (R.Z.); [email protected] (Y.L.) 
First page
2180
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904660272
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.