Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A fractional description for the optically induced mechanisms responsible for conductivity and multiphotonic effects in ZnO nanomaterials is studied here. Photoconductive, electrical, and nonlinear optical phenomena exhibited by pure micro and nanostructured ZnO samples were analyzed. A hydrothermal approach was used to synthetize ZnO micro-sized crystals, while a spray pyrolysis technique was employed to prepare ZnO nanostructures. A contrast in the fractional electrical behavior and photoconductivity was identified for the samples studied. A positive nonlinear refractive index was measured on the nanoscale sample using the z-scan technique, which endows it with a dominant real part for the third-order optical nonlinearity. The absence of nonlinear optical absorption, along with a strong optical Kerr effect in the ZnO nanostructures, shows favorable perspectives for their potential use in the development of all-optical switching devices. Fractional models for predicting electronic and nonlinear interactions in nanosystems could pave the way for the development of optoelectronic circuits and ultrafast functions controlled by ZnO photo technology.

Details

Title
Fractional Photoconduction and Nonlinear Optical Behavior in ZnO Micro and Nanostructures
Author
Garcia-de-los-Rios, Victor Manuel 1 ; Arano-Martínez, Jose Alberto 1   VIAFID ORCID Logo  ; Trejo-Valdez, Martin 2   VIAFID ORCID Logo  ; Hernández-Pichardo, Martha Leticia 2 ; Vidales-Hurtado, Mónica Araceli 3   VIAFID ORCID Logo  ; Torres-Torres, Carlos 1   VIAFID ORCID Logo 

 Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico 
 Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico 
 Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Querétaro, Instituto Politécnico Nacional, Santiago de Querétaro, Querétaro 76090, Mexico 
First page
885
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904692734
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.