Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In 2021, approximately 51% of patients diagnosed with kidney tumors underwent surgical resections. One possible way to reduce complications from surgery is to minimise the associated blood loss, which, in the case of partial nephrectomy, is caused by the inadequate repair of branching arteries within the kidney cut during the tumor resection. The kidney vasculature is particularly complicated in nature, consisting of various interconnecting blood vessels and numerous bifurcation, trifurcation, tetrafurcation, and pentafurcation points. In this study, we present a mathematical lumped-parameter model of a whole kidney, assuming a non-Newtonian Carreau fluid, as a first approximation of estimating the blood loss arising from the cutting of single or multiple vessels. It shows that severing one or more blood vessels from the kidney vasculature results in a redistribution of the blood flow rates and pressures to the unaltered section of the kidney. The model can account for the change in the total impedance of the vascular network and considers a variety of multiple cuts. Calculating the blood loss for numerous combinations of arterial cuts allows us to identify the appropriate surgical protocols required to minimise blood loss during partial nephrectomy as well as enhance our understanding of perfusion and account for the possibility of cellular necrosis. This model may help renal surgeons during partial organ resection in assessing whether the remaining vascularisation is sufficient to support organ viability.

Details

Title
A Mathematical Model of Blood Loss during Renal Resection
Author
Cowley, James 1 ; Luo, Xichun 2 ; Stewart, Grant D 3   VIAFID ORCID Logo  ; Wenmiao Shu 1   VIAFID ORCID Logo  ; Kazakidi, Asimina 1   VIAFID ORCID Logo 

 Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK 
 Centre for Precision Manufacturing—Department of Design Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK 
 Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK 
First page
316
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904753885
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.