Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A review of the published quantitative risk assessment (QRA) models of L. monocytogenes in dairy products was undertaken in order to identify and appraise the relative effectiveness of control measures and intervention strategies implemented at primary production, processing, retail, and consumer practices. A systematic literature search retrieved 18 QRA models, most of them (9) investigated raw and pasteurized milk cheeses, with the majority covering long supply chains (4 farm-to-table and 3 processing-to-table scopes). On-farm contamination sources, either from shedding animals or from the broad environment, have been demonstrated by different QRA models to impact the risk of listeriosis, in particular for raw milk cheeses. Through scenarios and sensitivity analysis, QRA models demonstrated the importance of the modeled growth rate and lag phase duration and showed that the risk contribution of consumers’ practices is greater than in retail conditions. Storage temperature was proven to be more determinant of the final risk than storage time. Despite the pathogen’s known ability to reside in damp spots or niches, re-contamination and/or cross-contamination were modeled in only two QRA studies. Future QRA models in dairy products should entail the full farm-to-table scope, should represent cross-contamination and the use of novel technologies, and should estimate L. monocytogenes growth more accurately by means of better-informed kinetic parameters and realistic time–temperature trajectories.

Details

Title
A Critical Review of Risk Assessment Models for Listeria monocytogenes in Dairy Products
Author
Gonzales-Barron, Ursula 1   VIAFID ORCID Logo  ; Cadavez, Vasco 1   VIAFID ORCID Logo  ; Guillier, Laurent 2   VIAFID ORCID Logo  ; Moez Sanaa 3 

 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected]; Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal 
 Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 Rue Pierre et Marie Curie Maisons-Alfort, 94701 Maisons-Alfort, France 
 Nutrition and Food Safety Department, World Health Organization (WHO), CH-1211 Geneva, Switzerland 
First page
4436
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904754930
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.