Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the advancements in utilizing Artificial Intelligence (AI) in embedded safety-critical systems based on Field-Programmable Gate Arrays (FPGAs), assuring that these systems meet their safety requirements is of paramount importance for their revenue service. Based on this context, this paper has two main objectives. The first of them is to present the Safety ArtISt method, developed by the authors to guide the lifecycle of AI-based safety-critical systems, and emphasize its FPGA-oriented tasks and recommended practice towards safety assurance. The second one is to illustrate the application of Safety ArtISt with an FPGA-based braking control system for autonomous vehicles relying on explainable AI generated with High-Level Synthesis. The results indicate that Safety ArtISt played four main roles in the safety lifecycle of AI-based systems for FPGAs. Firstly, it provided guidance in identifying the safety-critical role of activities such as sensitivity analyses for numeric representation and FPGA dimensioning to achieve safety. Furthermore, it allowed building qualitative and quantitative safety arguments from analyses and physical experimentation with actual FPGAs. It also allowed the early detection of safety issues—thus reducing project costs—and, ultimately, it uncovered relevant challenges not discussed in detail when designing safety-critical, explainable AI for FPGAs.

Details

Title
Design and Assurance of Safety-Critical Systems with Artificial Intelligence in FPGAs: The Safety ArtISt Method and a Case Study of an FPGA-Based Autonomous Vehicle Braking Control System
Author
Silva Neto, Antonio V  VIAFID ORCID Logo  ; Silva, Henrique L; CamargoJr, João B; AlmeidaJr, Jorge R; Cugnasca, Paulo S  VIAFID ORCID Logo 
First page
4903
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904838250
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.