Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate recognition of the canopy is a prerequisite for precision orchard yield estimation. This paper proposed an enhanced LA-dpv3+ approach for the recognition of cherry canopies based on UAV image data, with a focus on enhancing feature representation through the implementation of an attention mechanism. The attention mechanism module was introduced to the encoder stage of the DeepLabV3+ architecture, which improved the network’s detection accuracy and robustness. Specifically, we developed a diagonal discrete cosine transform feature strategy within the attention convolution module to extract finer details of canopy information from multiple frequency components. The proposed model was constructed based on a lightweight DeepLabv3+ network architecture that incorporates a MobileNetv2 backbone, effectively reducing computational costs. The results demonstrate that our proposed method achieved a balance between computational cost and the quality of results when compared to competing approaches. Our model’s accuracy exceeded 89% while maintaining a modest model size of only 46.8 MB. The overall performance indicated that with the help of a neural network, segmentation failures were notably reduced, particularly in high-density weed conditions, resulting in significant increases in accuracy (ACC), F1-score, and intersection over union (IOU), which were increased by 5.44, 3.39, and 8.62%, respectively. The method proposed in this paper may be applied to future image-based applications and contribute to automated orchard management.

Details

Title
Detection of Cherry Tree Crown Based on Improved LA-dpv3+ Algorithm
Author
Cheng, Zhenzhen 1 ; Cheng, Yifan 2 ; Li, Meng 1 ; Dong, Xiangxiang 1 ; Gong, Shoufu 1 ; Min, Xiaoxiao 1 

 School of Horticulture, Xinyang Agriculture and Forestry University, No. 1, North Ring Road, Pingqiao District, Xinyang 464000, China; [email protected] (Z.C.); [email protected] (S.G.); 
 School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China 
First page
2404
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904905124
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.