Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate climate data at fine spatial resolution are essential for scientific research and the development and planning of crucial social systems, such as energy and agriculture. Among them, sea surface temperature plays a critical role as the associated El Niño–Southern Oscillation (ENSO) is considered a significant signal of the global interannual climate system. In this paper, we propose an implicit neural representation-based interpolation method with temporal information (T_INRI) to reconstruct climate data of high spatial resolution, with sea surface temperature as the research object. Traditional deep learning models for generating high-resolution climate data are only applicable to fixed-resolution enhancement scales. In contrast, the proposed T_INRI method is not limited to the enhancement scale provided during the training process and its results indicate that it can enhance low-resolution input by arbitrary scale. Additionally, we discuss the impact of temporal information on the generation of high-resolution climate data, specifically, the influence of the month from which the low-resolution sea surface temperature data are obtained. Our experimental results indicate that T_INRI is advantageous over traditional interpolation methods under different enhancement scales, and the temporal information can improve T_INRI performance for a different calendar month. We also examined the potential capability of T_INRI in recovering missing grid value. These results demonstrate that the proposed T_INRI is a promising method for generating high-resolution climate data and has significant implications for climate research and related applications.

Details

Title
Reconstruction of Continuous High-Resolution Sea Surface Temperature Data Using Time-Aware Implicit Neural Representation
Author
Wang, Yang 1   VIAFID ORCID Logo  ; Karimi, Hassan A 1 ; Jia, Xiaowei 2 

 Geoinformatics Laboratory, School of Computing and Information, University of Pittsburgh, 135 N Bellfield Ave, Pittsburgh, PA 15213, USA; [email protected] 
 Department of Computer Science, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15213, USA; [email protected] 
First page
5646
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904925016
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.