Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An Mw 6.8 earthquake occurred in Luding County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, on 5 September 2022. This seismic event triggered numerous coseismic geohazards in the seismic zone. In this study, the ascending- and descending-track synthetic aperture radar (SAR) images observed by the Sentinel-1A satellite are utilized to extract the coseismic surface deformation of the Luding earthquake. Subsequently, a faulting model is estimated based on the elastic dislocation theory, under the constraint of the InSAR observation. Additionally, the POT technique was employed to detect coseismic geohazards. High-spatial-resolution optical remote sensing images served to validate the reliability of the detection results. The coseismic interferometric synthetic aperture radar (InSAR) deformation field indicated a maximum deformation of ~190 mm and ~140 mm along the ascending and descending tracks, respectively. The estimated best-fitting faulting model suggests that the optimal seismogenic fault strike and dip angles are 169.3° and 70°, respectively. The fault slip predominantly exhibits left-lateral strike-slip characteristics and is concentrated at depths of 3–12 km. The estimated maximum fault slip was 2.67 m, occurring at a depth of 7 km. The pixel offset tracking (POT) result derived from the pre- and post-earthquake SAR images found a total of 245 medium- to large-scale coseismic geohazards, with a verification rate from optical images exceeding 64%. The distribution of these geohazards is notably dense within the significant fault rupture segment. Geohazards on the fault hanging wall are densely packed, whereas landslides along the Dadu River’s fault footwall are also notably frequent.

Details

Title
Research on the Surface Deformation, Fault Rupture, and Coseismic Geohazard of the 2022 Luding Mw 6.8 Earthquake
Author
Lu, Yiling 1 ; Yang, Yinghui 2 ; Zeng, Li 1 ; Xu, Wanfu 1 ; Song, Jiawei 2 ; Li, Xiaoyun 2 

 School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; [email protected] (Y.L.); 
 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China 
First page
9875
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904929771
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.