It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Honey adulteration is one of the major health concerns among honey consumers, it is essential to inspect the quality of honey. One of the methods is to characterize the honey by using the microwave reflection technique. A Five-Port Reflectometer (FPR) is proposed in this work. The microstrip Five-Port ring junction circuit was designed for multiple frequencies of 0.60 GHz, 2.28 GHz, and 3.47 GHz. The fabricated circuit works with an analogue-digital converter, open-ended coaxial sensor, diode detectors and computer to form a complete FPR measurement system. The reflection measurements were conducted on Honey Gold and Trigona Honey for multiple frequencies. The performance of the FPR in s-parameter measurement was verified by Vector Network Analyzer (VNA). This study shown that the performance of FPR in term of reflection measurement has promising accuracy which is comparable with VNA. The FPR can be used as an alternative instrumentation system for characterizing pure and adulterated honey.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer