It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents the design and analysis of a diplexer for satellite communication system based on hybrid spoof surface plasmon polariton (SSPP) and substrate integrated waveguide (SIW) transmission lines. The proposed diplexer consists of a SSPP printed line composed of H-shaped periodical grooved strips to operate as a low pass filter and a SIW to operate as a high pass filter. The operating frequency bands of the proposed diplexer are from 11.7 to 12.75 GHz for the downlink (DL) band, and from 17.3 to 18.35 GHz for the uplink (UL) band. These frequency bands correspond to the operating frequencies in Nile Sat 201 system. The frequencies of the DL and UL bands are adjusted independently by tuning the structure parameters of SSPP and SIW sections, respectively. The proposed hybrid SSPP-SIW diplexer is fabricated and measured. Simulated and measured results show good channel isolation, low return loss and low insertion loss in the required frequency bands.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer