Abstract

Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe1−Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h−1 mgFe−1 and a high NH3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe1−Ti pairs (51000 μg h–1 mgFe–1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.

Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe1−Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion.

Details

Title
Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia
Author
Dai, Jie 1   VIAFID ORCID Logo  ; Tong, Yawen 2 ; Zhao, Long 1   VIAFID ORCID Logo  ; Hu, Zhiwei 3   VIAFID ORCID Logo  ; Chen, Chien-Te 4   VIAFID ORCID Logo  ; Kuo, Chang-Yang 5 ; Zhan, Guangming 1 ; Wang, Jiaxian 1 ; Zou, Xingyue 1 ; Zheng, Qian 1 ; Hou, Wei 1 ; Wang, Ruizhao 1 ; Wang, Kaiyuan 1 ; Zhao, Rui 1 ; Gu, Xiang-Kui 2   VIAFID ORCID Logo  ; Yao, Yancai 1 ; Zhang, Lizhi 1   VIAFID ORCID Logo 

 Shanghai Jiao Tong University, School of Environmental Science and Engineering, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
 Wuhan University, School of Power and Mechanical Engineering, Wuhan, China (GRID:grid.49470.3e) (ISNI:0000 0001 2331 6153) 
 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X) 
 National Synchrotron Radiation Research Center, Hsinchu, China (GRID:grid.410766.2) (ISNI:0000 0001 0749 1496) 
 National Synchrotron Radiation Research Center, Hsinchu, China (GRID:grid.410766.2) (ISNI:0000 0001 0749 1496); National Yang Ming Chiao Tung University, Department of Electrophysics, Hsinchu, China (GRID:grid.260539.b) (ISNI:0000 0001 2059 7017) 
Pages
88
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2908982404
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.