It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Materials showing second-order nonlinear transport under time reversal symmetry can be used for Radio Frequency (RF) rectification, but practical application demands room temperature operation and sensitivity to microwatts level RF signals in the ambient. In this study, we demonstrate that BiTeBr exhibits a giant nonlinear response which persists up to 350 K. Through scaling and symmetry analysis, we show that skew scattering is the dominant mechanism. Additionally, the sign of the nonlinear response can be electrically switched by tuning the Fermi energy. Theoretical analysis suggests that the large Rashba spin-orbit interactions (SOI), which gives rise to the chirality of the Bloch electrons, provide the microscopic origin of the observed nonlinear response. Our BiTeBr rectifier is capable of rectifying radiation within the frequency range of 0.2 to 6 gigahertz at room temperature, even at extremely low power levels of −15 dBm, and without the need for external biasing. Our work highlights that materials exhibiting large Rashba SOI have the potential to exhibit nonlinear responses at room temperature, making them promising candidates for harvesting high-frequency and low-power ambient electromagnetic energy.
The second order nonlinear Hall effect leads to a direct voltage generated from the rectification effect. While this rectification property is appeal for use in devices, most materials exhibiting a second order nonlinear hall effect are constrained to low temperatures. Here, Lu et al demonstrate a second order nonlinear transport behaviour that persists above room temperature in BiTeBr, and construct a prototype rectifier based on this effect.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 National University of Singapore, Department of Chemistry, Singapore, Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431)
2 Hong Kong University of Science and Technology, Department of Physics, Hong Kong, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450)
3 Nanyang Technological University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361)
4 University of Science and Technology of China, Department of Physics and Hefei National Laboratory for Physical Science at Microscale, Hefei, P. R. China (GRID:grid.59053.3a) (ISNI:0000 0001 2167 9639)