Full text

Turn on search term navigation

© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Bacillus thuringiensis (Bt) is a widely used biopesticide. The bioinsecticide based on Bt is obtained by fermentation, but the substrates currently used for its production constitute ingredients of high commercial value. In this context, the use of agro-industrial residues as substrates is an alternative to make the fermentation process viable on a large scale, in addition to minimizing environmental problems and contributing to the destination of these residues for biotechnological purposes.

Results

In the first part of this study, a previously isolated spore forming soil bacteria (Bv5) harboring and expressing a novel cry 8A gene was confirmed as B. thuringiensis based on its morphological characteristics, Gram staining, scanning electron microscopy (SEM) and genome sequencing. Bv5 was established as a Gram-positive spore forming bacteria with ellipsoidal spores and small round toxins. Bv5 genome comprised of the 5.30 Mb chromosome and two megaplasmids of 450 kb and 261 kb, respectively, with cry 8A gene located on the smallest megaplasmid. In the second part of the study, the physiological profile of the Bv5 strain during fermentation in different agro-industrial biowastes (cassava wastewater, orange pulp wash and whey) was analyzed. The fermentation experiment was divided into two stages. In the first stage, the agro-industrial waste with or without salts with the best results for biomass, spores and proteins production was selected. In the second stage, the effect of the selected medium in original and diluted form with the C:N balance was evaluated, in two different fermentation times (72 h and 96 h). Pulp wash enriched with salts was selected as the most suitable medium for the growth of Bv5 strain in the first stage. In the second stage pulp wash (without dilution) with the addition of salts, and with nitrogen supplementation, was considered the best for cell growth, spore and toxin production by Bv5.

Conclusions

To conclude, our study provide a new alternative for bio-waste from the orange juice industry, as well as potential culture medium for the Bt commercial scale production.

Details

Title
Use of agro-industrial bio-waste for the growth and production of a previously isolated Bacillus thuringiensis strain
Author
dos Santos, Hister M. M. 1 ; de S. Varize, Camila 2 ; Valença, Camilla A. S. 1 ; Dossi, Fábio C. A. 3 ; de Aragão Batista, Marcus V. 4 ; Fernandes, Roberta P. M. 5 ; Severino, Patricia 1 ; Souto, Eliana B. 6   VIAFID ORCID Logo  ; Dolabella, Silvio S. 7 ; da C. Mendonça, Marcelo 1 ; Jain, Sona 1 

 University of Tiradentes (UNIT), Industrial Biotechnology Program, Aracaju, Brazil (GRID:grid.442005.7) (ISNI:0000 0004 0616 7223) 
 Empresa de Desenvolvimento Agropecuário Do Estado de Sergipe (EMDAGRO), Laboratório de Controle Biotecnológico de Pagas (LCBiotec), São Cristóvão, Brazil (GRID:grid.442005.7) 
 Institute of Technology and Research, Laboratory of Colloidal Systems Studies, Aracaju, Brazil (GRID:grid.442005.7) 
 Federal University of Sergipe, Department of Biology, São Cristóvão, Brazil (GRID:grid.411252.1) (ISNI:0000 0001 2285 6801) 
 Federal University of Sergipe, Department of Physiology, São Cristóvão, Brazil (GRID:grid.411252.1) (ISNI:0000 0001 2285 6801) 
 University of Porto, UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, Porto, Portugal (GRID:grid.5808.5) (ISNI:0000 0001 1503 7226); University of Porto, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Porto, Portugal (GRID:grid.5808.5) (ISNI:0000 0001 1503 7226) 
 Federal University of Sergipe, Department of Morphology, São Cristóvão, Brazil (GRID:grid.411252.1) (ISNI:0000 0001 2285 6801) 
Pages
5
Publication year
2024
Publication date
Dec 2024
Publisher
Springer Nature B.V.
ISSN
23148535
e-ISSN
23148543
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2910046265
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.