It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The CrO2 micro rod powder was synthesized by decomposing the CrO3 flakes at a specific temperature to yield precursor and annealing such a precursor in a sealed glass tube. The magneto-transport properties have been measured by a direct current four-probe method using a Cu/CrO2 rods/colloidal silver liquid electrode sandwich device. The largest magnetoresistance (MR) around ~72 % was observed at 77 K with applied current of 0.05 μA. The non-linear I–V curve indicates a tunneling type transport properties and the tunneling barrier height is around 2.2 ± 0.04 eV at 77 K, which is obtained with fitting the non-linear I–V curves using Simmons’ equation. A mixing of Cr oxides on the surface of CrO2 rod observed by X-ray photoemission spectroscopy provides a tunneling barrier rather than a single phase of Cr2O3 insulating barrier. The MR shows strong bias voltage dependence and is ascribed to the two-step tunneling process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Lanzhou University, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou, People’s Republic of China (GRID:grid.32566.34) (ISNI:0000 0000 8571 0482)