It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The androgen receptor (AR) plays an important role in male-dominant hepatocellular carcinoma, and specific acquired somatic mutations of AR have been observed in HCC patients. Our previous research have established the role of AR wild type as one of the key oncogenes in hepatocarcinogenesis. However, the role of hepatic acquired somatic mutations of AR remains unknown. In this study, we identify two crucial acquired somatic mutations, Q62L and E81Q, situated close to the N-terminal activation function domain-1 of AR. These mutations lead to constitutive activation of AR, both independently and synergistically with androgens, making them potent driver oncogene mutations. Mechanistically, these N-terminal AR somatic mutations enhance de novo lipogenesis by activating sterol regulatory element-binding protein-1 and promote glycogen accumulation through glycogen phosphorylase, brain form, thereby disrupting the AMPK pathway and contributing to tumorigenesis. Moreover, the AR mutations show sensitivity to the AMPK activator A769662. Overall, this study establishes the role of these N- terminal hepatic mutations of AR as highly malignant oncogenic drivers in hepatocarcinogenesis and highlights their potential as therapeutic targets for patients harboring these somatic mutations.
Several mutations proximal to the activation function domain-1 in androgen receptor lead to its constitutive activation and drive the development of hepatocellular carcinoma.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Nanfang Hospital, Southern Medical University, Department of Radiation Oncology, Guangzhou, China (GRID:grid.416466.7) (ISNI:0000 0004 1757 959X); Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China (GRID:grid.488530.2) (ISNI:0000 0004 1803 6191)
2 Southern Medical University, Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Guangzhou, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471)
3 Nanfang Hospital, Southern Medical University, Department of Radiation Oncology, Guangzhou, China (GRID:grid.416466.7) (ISNI:0000 0004 1757 959X)
4 Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China (GRID:grid.488530.2) (ISNI:0000 0004 1803 6191)