It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, we introduce a first-order nonnegative integer-valued moving average process with power series innovations based on a Poisson thinning operator (PINMAPS(1)) for modeling overdispersed, equidispersed and underdispersed count time series. This process contains the PINMA process with geometric, Bernoulli, Poisson, binomial, negative binomial and logarithmic innovations which some of them are studied in details. Some statistical properties of the process are obtained. The unknown parameters of the model are estimated using the Yule-Walker, conditional least squares and least squares feasible generalized methods. Also, the performance of estimators is evaluated using a simulation study. Finally, we apply the model to three real data set and show the ability of the model for predicting data compared to competing models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer