It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present study focuses on the problem of vehicle routing with limited capacity, with the objective of minimizing the transportation distance required to serve h clients with predetermined locations and needs. The aim is to create k trips that cover the shortest possible distance. To achieve this goal, a hybrid whale optimization algorithm (hGWOA) is proposed, which combines the whale optimization algorithm (WOA) with the grey wolf optimizer (GWO). The proposed hybrid model is comprised of two main steps. First step, the GWO’s hunting mechanism is integrated transitioning to the utilization phase of WOA, and a newly devised state is introduced that is linked to GWO. In the second step, a novel technique is incorporated into the exploration mission phase to enhance the resolve after per iteration. The algorithm’s performance is assessed and compared with other modern algorithms, including the GWO, WOA, ant lion optimizer (ALO), and dragonfly algorithm (DA) using 23 benchmark test functions and CEC2017 benchmark test function. The results indicate that the hybrid hGWOA method outperforms other algorithms in terms of delivery distance optimization for scenarios involving scale and complexity. These findings are corroborated through case studies related to cement delivery and a real-world scenario in Viet Nam.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ho Chi Minh City University of Technology (HCMUT), Vietnam National University (VNU-HCM), Department of Construction Engineering and Management, Ho Chi Minh City, Vietnam (GRID:grid.444828.6) (ISNI:0000 0001 0111 2723)