Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the characteristics of good concealment ability and strong mobility, multiple, small spherical underwater robot formations play an important role in near coast defense missions, such as cruising, reconnaissance, surveillance, and sensitive target capturing. Referring to the formation problem for underwater small spherical robots with limited energy, perception, and computation abilities, a trajectory tracking-based formation strategy that transforms the complex formation tracking problem into a simple trajectory tracking problem of a single robot is provided. Two layers are designed in the formation tracking strategy. The upper layer is a virtual structure-based formation algorithm. The bottom layer is a tracking controller based on model predictive control (MPC). The formation algorithm is in charge of calculating reference trajectory for each robot in the formation according to the global formation path. The MPC-based dynamic controller for each robot is designed to track the self reference trajectory. Compared with the model predictive control method used for the traditional trajectory tracking problem of a single robot, this paper additionally considers the formation constraints and the internal collision avoidance. In addition, the extended state observer (ESO) is utilized to estimate the lumped disturbance composed of environment disturbance and the inaccurate dynamic model of a small spherical robot. Not only are the numerical simulations based on MATLAB v.2015a, but physical simulations based on self-building multi-spherical robot formation platform are also carried out. Furthermore, through using two small spherical robots, a formation tracing experiment is conducted. All of the results prove that the proposed formation method is feasible and practical for small spherical robots.

Details

Title
Design and Implementation of a Model Predictive Formation Tracking Control System for Underwater Multiple Small Spherical Robots
Author
Hou, Xihuan 1   VIAFID ORCID Logo  ; Xing, Huiming 2 ; Guo, Shuxiang 3   VIAFID ORCID Logo  ; Shi, Huimin 1 ; Yuan, Na 1 

 School of Intelligence and Information Engineer, Tangshan University, Tangshan 063000, China; [email protected] (X.H.); [email protected] (H.S.); [email protected] (N.Y.) 
 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; [email protected] 
 Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China 
First page
294
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912559144
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.