Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multi-access edge computing (MEC) brings computations closer to mobile users, thereby decreasing service latency and providing location-aware services. Nevertheless, given the constrained resources of the MEC server, it is crucial to provide a limited number of services that properly fulfill the demands of users. Several static service caching approaches have been proposed. However, the effectiveness of these strategies is constrained by the dynamic nature of the system states and user demand patterns. To mitigate this problem, several investigations have been conducted on dynamic service caching techniques that can be categorized as centralized and distributed. However, centralized approaches typically require gathering comprehensive data from the entire system. This increases the burden on resources and raises concerns regarding data security and privacy. By contrast, distributed strategies require the formulation of complicated optimization problems without leveraging the inherent characteristics of the data. This paper proposes a distributed service caching strategy based on federated learning (SCFL) that works efficiently in a distributed system with user mobility. An autoencoder model is utilized to extract features regarding the service request distribution of individual MEC servers. The global model is then generated using federated learning, which is utilized to make service-caching decisions. Extensive experiments are conducted to demonstrate that the performance of the proposed method is superior to that of other methods.

Details

Title
Federated Learning-Based Service Caching in Multi-Access Edge Computing System
Author
Tran, Tuan Phong 1   VIAFID ORCID Logo  ; Anh Hung Ngoc Tran 1 ; Nguyen, Thuan Minh 1 ; Yoo, Myungsik 2 

 Department of Information Communication Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea; [email protected] (T.P.T.); [email protected] (A.H.N.T.); [email protected] (T.M.N.) 
 School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea 
First page
401
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912615148
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.