Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Medical image analysis is crucial for the efficient diagnosis of many diseases. Typically, hospitals maintain vast repositories of images, which can be leveraged for various purposes, including research. However, access to such image collections is largely restricted to safeguard the privacy of the individuals whose images are being stored, as data protection concerns come into play. Recently, the development of solutions for Automated Medical Image Analysis has gained significant attention, with Deep Learning being one solution that has achieved remarkable results in this area. One promising approach for medical image analysis is Federated Learning (FL), which enables the use of a set of physically distributed data repositories, usually known as nodes, satisfying the restriction that the data do not leave the repository. Under these conditions, FL can build high-quality, accurate deep-learning models using a lot of available data wherever it is. Therefore, FL can help researchers and clinicians diagnose diseases and support medical decisions more efficiently and robustly. This article provides a systematic survey of FL in medical image analysis, specifically based on Magnetic Resonance Imaging, Computed Tomography, X-radiography, and histology images. Hence, it discusses applications, contributions, limitations, and challenges and is, therefore, suitable for those who want to understand how FL can contribute to the medical imaging domain.

Details

Title
Federated Learning in Medical Image Analysis: A Systematic Survey
Author
Fabiana Rodrigues da Silva 1 ; Camacho, Rui 2   VIAFID ORCID Logo  ; João Manuel R S Tavares 3   VIAFID ORCID Logo 

 Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; [email protected] 
 Departamento de Engenharia Informática, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; [email protected] 
 Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal 
First page
47
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912642196
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.