Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The integration of wind energy sources and plug-in electric vehicles is essential for the efficient planning, reliability, and operation of modern electric power systems. Minimizing the overall operational cost of integrated power systems while dealing with wind energy sources and plug-in electric vehicles in integrated power systems using a chaotic zebra optimization algorithm (CZOA) is described. The proposed system deals with a probabilistic forecasting system for wind power generation and a realistic plug-in electric vehicle charging profile based on travel patterns and infrastructure characteristics. The objective is to identify the optimal scheduling and committed status of the generating unit for thermal and wind power generation while considering the system power demand, charging, and discharging of electric vehicles, as well as power available from wind energy sources. The proposed CZOA adeptly tackles the intricacies of the unit commitment problem by seamlessly integrating scheduling and the unit’s committed status, thereby enabling highly effective optimization. The proposed algorithm is tested for 10-, 20-, and 40-generating unit systems. The empirical findings pertaining to the 10-unit system indicate that the amalgamation of a thermal generating unit system with plug-in electric vehicles yields a 0.84% reduction in total generation cost. Furthermore, integrating the same system with a wind energy source results in a substantial 12.71% cost saving. Notably, the integration of the thermal generating system with both plug-in electric vehicles and a wind energy source leads to an even more pronounced overall cost reduction of 13.05%. The outcome of this study reveals competitive test results for 20- and 40-generating unit systems and contributes to the advancement of sustainable and reliable power systems, fostering the transition towards a greener energy future.

Details

Title
Optimal Unit Commitment and Generation Scheduling of Integrated Power System with Plug-In Electric Vehicles and Renewable Energy Sources
Author
Kamboj, Vikram Kumar 1 ; Om Parkash Malik 2   VIAFID ORCID Logo 

 School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144001, India; [email protected]; Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Bisset School of Business, Mount Royal University, Calgary, AB T3E 6K6, Canada 
 Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada 
First page
123
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912700140
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.