Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rapid and accurate detection of protein toxins is crucial for public health. The Raman spectra of several protein toxins, such as abrin, ricin, staphylococcal enterotoxin B (SEB), and bungarotoxin (BGT), have been studied. Multivariate scattering correction (MSC), Savitzky–Golay smoothing (SG), and wavelet transform methods (WT) were applied to preprocess Raman spectra. A principal component analysis (PCA) was used to extract spectral features, and the PCA score plots clustered four toxins with two other proteins. The k-means clustering results show that the spectra processed with MSC and MSC-SG methods have the best classification performance. Then, the two data types were classified using partial least squares discriminant analysis (PLS-DA) with an accuracy of 100%. The prediction results of the PCA and PLS-DA and the partial least squares regression model (PLSR) perform well for the fingerprint region spectra. The PLSR model demonstrates excellent classification and regression ability (accuracy = 100%, Rcv = 0.776). Four toxins were correctly classified with interference from two proteins. Classification models based on spectral feature extraction were established. This strategy shows excellent potential in toxin detection and public health protection. These models provide alternative paths for the development of rapid detection devices.

Details

Title
Performance of Classification Models of Toxins Based on Raman Spectroscopy Using Machine Learning Algorithms
Author
Zhang, Pengjie; Liu, Bing; Mu, Xihui; Xu, Jiwei  VIAFID ORCID Logo  ; Du, Bin; Wang, Jiang; Liu, Zhiwei; Tong, Zhaoyang
First page
197
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912731363
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.