Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, the excessive use and disordered discharge of antibiotics have had sustained adverse effects on ecological balance and human health. The convenient and effective detection of these “emerging pollutants” has become one of the research hotspots in the environmental field. In this study, a defective UiO-66 material, namely UiO-66-D, was constructed for the sensitive and selective sensing of tetracycline (TC) and moxifloxacin (MXF) in water. By utilizing a modulated synthesis approach with concentrated HCl, stable blue fluorescence at 400 nm was achieved for UiO-66-D. The as-prepared UiO-66-D could conduct the inner filter effect (IFE) within a short time (10 s) when sensing TC and MXF, and the fluorescence of the UiO-66-D was quenched. In particular, when sensing MXF, a ratiometric signal response was generated due to the combined effect of the IFE and the fluorescence of MXF itself. The sensitive and selective detection of TC and MXF using UiO-66-D was free from the interference of common anions and cations in water samples. The detection limit (LOD) for TC was determined to be 70.9 nM (0–115 μM), while for MXF, it was found to be 33.1 nM (0–24 μM). Additionally, UiO-66-D was successfully used to recognize TC and MXF in lake water with good recoveries, demonstrating that UiO-66-D exhibits substantial potential in the recognition of pollutants in environmental waters.

Details

Title
A Multi-Functional Fluorescence Sensing Platform Based on a Defective UiO-66 for Tetracycline and Moxifloxacin
Author
Zhang, Yanqiu 1 ; Lu, Yang 2 ; Sun, Minrui 2 ; Zeng, Dechang 2 

 School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; School of Urban Construction, Changzhou University, Changzhou 213164, China 
 School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China 
First page
145
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912771856
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.