Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

5G acts as a highway enabling innovative digital transformation and the Fourth Industrial Revolution in our lives. It is undeniable that the success of such a paradigm shift hinges on robust security measures. Foremost among these is primary authentication, the initial step in securing access to 5G network environments. For the 5G primary authentication, two protocols, namely 5G Authentication and Key Agreement (5G-AKA) and Improved Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA′), were proposed and standardized, where the former is for 3GPP devices, and the latter is for non-3GPP devices. Recent scrutiny has unveiled vulnerabilities in the 5G-AKA protocol, exposing it to security breaches, including linkability attacks. Moreover, mobile communication technologies are dramatically evolving while 3GPP has standardized Authentication and Key Management for Applications (AKMA) to reuse the credentials, generated during primary authentication, for 5G network applications. That makes it so significant for 5G-AKA to be improved to support forward secrecy as well as address security attacks. In response, several protocols have been proposed to mitigate these security challenges. In particular, they tried to strengthen security by reusing secret keys negotiated through the Elliptic Curve Integrated Encryption Scheme (ECIES) and countering linkability attacks. However, they still have encountered limitations in completing forward secrecy. Motivated by this, we propose an augmentation to 5G-AKA to achieve forward security and thwart linkability attacks (called 5G-AKA-FS). In 5G-AKA-FS, the home network (HN), instead of using its static ECIES key pair, generates a new ephemeral key pair to facilitate robust session key negotiation, truly realizing forward security. In order to thoroughly and precisely prove that 5G-AKA-FS is secure, formal security verification is performed by applying both BAN Logic and ProVerif. As a result, it is demonstrated that 5G-AKA-FS is valid. Besides, our performance comparison highlights that the communication and computation overheads are intrinsic to 5G-AKA-FS. This comprehensive analysis showcases how the protocol effectively balances between security and efficiency.

Details

Title
5G-AKA-FS: A 5G Authentication and Key Agreement Protocol for Forward Secrecy
Author
You, Ilsun 1   VIAFID ORCID Logo  ; Kim, Gunwoo 1   VIAFID ORCID Logo  ; Shin, Seonghan 2   VIAFID ORCID Logo  ; Kwon, Hoseok 1   VIAFID ORCID Logo  ; Kim, Jongkil 3   VIAFID ORCID Logo  ; Baek, Joonsang 4   VIAFID ORCID Logo 

 Department of Financial Information Security, Kookmin University, Seoul-si 02707, Republic of Korea; [email protected] (I.Y.); [email protected] (G.K.); [email protected] (H.K.) 
 Cyber Physical Security Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan 
 Department of Cyber Security, Ewha Womans University, Seoul-si 03760, Republic of Korea; [email protected] 
 School of Computing and Information Technology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; [email protected] 
First page
159
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912800191
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.