It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the booming of cloud-based digital twin systems, monitoring key performance indicators has become crucial for ensuring system security and reliability. Due to the massive amount of monitoring data generated, data compression is necessary to save data transmission bandwidth and storage space. Although the existing research has proposed compression methods for multivariate time series (MTS), it is still a challenge to guarantee the correlation between data when compressing the MTS. This paper proposes an MTS Collaborative Compression (MTSCC) method based on the two-step compression scheme. First, shape-based clustering is implemented to group the MTS. Afterward, the compressed sensing is optimized to achieve collaborative compression of grouped data. Based on a real-world MTS dataset, the experimental results show that the proposed MTSCC can effectively preserve the complex temporal correlation between indicators while achieving efficient data compression, and the root mean squared error of correlation between the reconstructed and original data is only 0.0489 in the case of 30% compression ratio. Besides, it is verified that using the reconstructed data in the production environment has almost the same performance as using the original data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China Telecom Cloud Computing Corporation, Beijing, China (GRID:grid.520377.4)