Full text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

More recently, soft actuators have evoked great interest in the next generation of soft robots. Despite significant progress, the majority of current soft actuators suffer from the lack of real-time sensory feedback and self-control functions, prohibiting their effective sensing and multitasking functions. Therefore, in this work, a near-infrared-driven bimorph membrane, with self-sensing and feedback loop control functions, is produced by layer by layer (LBL) assembling MXene/PDDA (PM) onto liquid crystal elastomer (LCE) film. The versatile integration strategy successfully prevents the separation issues that arise from moduli mismatch between the sensing and the actuating layers, ultimately resulting in a stable and tightly bonded interface adhesion. As a result, the resultant membrane exhibited excellent mechanical toughness (tensile strengths equal to 16.3 MPa (||)), strong actuation properties (actuation stress equal to 1.56 MPa), and stable self-sensing (gauge factor equal to 4.72) capabilities. When applying the near-infrared (NIR) laser control, the system can perform grasping, traction, and crawling movements. Furthermore, the wing actuation and the closed-loop controlled motion are demonstrated in combination with the insect microcontroller unit (MCU) models. The remote precision control and the self-sensing capabilities of the soft actuator pave a way for complex and precise task modulation in the future.

Details

Title
Near-Infrared Light-Driven MXene/Liquid Crystal Elastomer Bimorph Membranes for Closed-Loop Controlled Self-Sensing Bionic Robots
Author
Yang, Youwei 1 ; Meng, Lingxian 1 ; Zhang, Juzhong 1 ; Gao, Yadong 1 ; Zijuan Hao 1 ; Liu, Yang 2 ; Niu, Mingjun 1 ; Zhang, Xiaomeng 1 ; Liu, Xuying 1 ; Liu, Shuiren 1   VIAFID ORCID Logo 

 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, P. R. China 
 School of Chemical Engineering, Zhengzhou University, Zhengzhou, P. R. China 
Section
Research Articles
Publication year
2024
Publication date
Jan 2024
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2913533757
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.