It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Due to their high flexibility, low cost, and ease of handling, Unmanned Aerial Vehicles (UAVs) are often used to perform difficult tasks in complex environments. Stable and reliable path planning capability is the fundamental demand for UAVs to accomplish their flight tasks. Most researches on UAV path planning are carried out under the premise of known environmental information, and it is difficult to safely reach the target position in the face of unknown environment. Thus, an autonomous collision-free path planning algorithm for UAVs in unknown complex environments (APPA-3D) is proposed. An anti-collision control strategy is designed using the UAV collision safety envelope, which relies on the UAV's environmental awareness capability to continuously interact with external environmental information. A dynamic reward function of reinforcement learning combined with the actual flight environment is designed and an optimized reinforcement learning action exploration strategy based on the action selection probability is proposed. Then, an improved RL algorithm is used to simulate the UAV flight process in unknown environment, and the algorithm is trained by interacting with the environment, which finally realizes autonomous collision-free path planning for UAVs. The comparative experimental results in the same environment show that APPA-3D can effectively guide the UAV to plan a safe and collision-free path from the starting point to the target point in an unknown complex 3D environment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Civil Aviation College, Shenyang Aerospace University, Shenyang, China (GRID:grid.443541.3) (ISNI:0000 0001 1803 6843); Henan Shijia Photons Technology Co., Ltd, Hebi, China (GRID:grid.443541.3)
2 Civil Aviation College, Shenyang Aerospace University, Shenyang, China (GRID:grid.443541.3) (ISNI:0000 0001 1803 6843)