Abstract

Graph embedding techniques are using deep learning algorithms in data analysis to solve problems of such as node classification, link prediction, community detection, and visualization. Although typically used in the context of guessing friendships in social media, several applications for graph embedding techniques in biomedical data analysis have emerged. While these approaches remain computationally demanding, several developments over the last years facilitate their application to study biomedical data and thus may help advance biological discoveries. Therefore, in this review, we discuss the principles of graph embedding techniques and explore the usefulness for understanding biological network data derived from mass spectrometry and sequencing experiments, the current workhorses of systems biology studies. In particular, we focus on recent examples for characterizing protein–protein interaction networks and predicting novel drug functions.

Details

Title
Graph embedding on mass spectrometry- and sequencing-based biomedical data
Author
Alvarez-Mamani, Edwin; Dechant, Reinhard; Beltran-Castañón, César A; Ibáñez, Alfredo J
Pages
1-19
Section
Review
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2914277443
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.