It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deep learning is a highly significant technology in clinical treatment and diagnostics nowadays. Convolutional Neural Network (CNN) is a new idea in deep learning that is being used in the area of computer vision. The COVID-19 detection is the subject of our medical study. Researchers attempted to increase the detection accuracy but at the cost of high model complexity. In this paper, we desire to achieve better accuracy with little training space and time so that this model easily deployed in edge devices. In this paper, a new CNN design is proposed that has three stages: pre-processing, which removes the black padding on the side initially; convolution, which employs filter banks; and feature extraction, which makes use of deep convolutional layers with skip connections. In order to train the model, chest X-ray images are partitioned into three sets: learning(0.7), validation(0.1), and testing(0.2). The models are then evaluated using the test and training data. The LMNet, CoroNet, CVDNet, and Deep GRU-CNN models are the other four models used in the same experiment. The propose model achieved 99.47% & 98.91% accuracy on training and testing respectively. Additionally, it achieved 97.54%, 98.19%, 99.49%, and 97.86% scores for precision, recall, specificity, and f1-score respectively. The proposed model obtained nearly equivalent accuracy and other similar metrics when compared with other models but greatly reduced the model complexity. Moreover, it is found that proposed model is less prone to over fitting as compared to other models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer