Abstract

The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.

Details

Title
ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features
Author
Abbas, Ahmed; Chandratre, Khyati; Gao, Yunpeng; Yuan, Jiapei; Zhang, Michael Q; Mani, Ram S
Pages
1-27
Section
Method
Publication year
2024
Publication date
2024
Publisher
BioMed Central
ISSN
14747596
e-ISSN
1474760X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2914286286
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.