It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Long Intergenic noncoding RNA predicting CARdiac remodeling (LIPCAR) is a long noncoding RNA identified in plasma of patients after myocardial infarction (MI) to be associated with left ventricle remodeling (LVR). LIPCAR was also shown to be a predictor of early death in heart failure (HF) patients. However, no information regarding the expression of LIPCAR and its function in heart as well as the mechanisms involved in its transport to the circulation is known. The aims of this study are (1) to characterize the transporter of LIPCAR from heart to circulation; (2) to determine whether LIPCAR levels in plasma isolated-extracellular vesicles (EVs) reflect the alteration of its expression in total plasma and could be used as biomarkers of LVR post-MI.
Methods
Since expression of LIPCAR is restricted to human species and the limitation of availability of cardiac biopsy samples, serum-free conditioned culture media from HeLa cells were first used to characterize the extracellular transporter of LIPCAR before validation in EVs isolated from human cardiac biopsies (non-failing and ischemic HF patients) and plasma samples (patients who develop or not LVR post-MI). Differential centrifugation at 20,000g and 100,000g were performed to isolate the large (lEVs) and small EVs (sEVs), respectively. Western blot and nanoparticle tracking (NTA) analysis were used to characterize the isolated EVs. qRT-PCR analysis was used to quantify LIPCAR in all samples.
Results
We showed that LIPCAR is present in both lEVs and sEVs isolated from all samples. The levels of LIPCAR are higher in lEVs compared to sEVs isolated from HeLa conditioned culture media and cardiac biopsies. No difference of LIPCAR expression was observed in tissue or EVs isolated from cardiac biopsies obtained from ischemic HF patients compared to non-failing patients. Interestingly, LIPCAR levels were increased in lEVs and sEVs isolated from MI patients who develop LVR compared to patients who did not develop LVR.
Conclusion
Our data showed that large EVs are the main extracellular vesicle transporter of LIPCAR from heart into the circulation independently of the status, non-failing or HF, in patients. The levels of LIPCAR in EVs isolated from plasma could be used as biomarkers of LVR in post-MI patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer