It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Egg-laying mammals (monotremes) are considered “primitive” due to traits such as oviparity, cloaca, and incomplete homeothermy, all of which they share with reptiles. Two groups of monotremes, the terrestrial echidna (Tachyglossidae) and semiaquatic platypus (Ornithorhynchidae), have evolved highly divergent characters since their emergence in the Cenozoic era. These evolutionary differences, notably including distinct electrosensory and chemosensory systems, result from adaptations to species-specific habitat conditions. To date, very few studies have examined the visual adaptation of echidna and platypus. In the present study, we show that echidna and platypus have different light absorption spectra in their dichromatic visual sensory systems at the molecular level. We analyzed absorption spectra of monotreme color opsins, long-wavelength sensitive opsin (LWS) and short-wavelength sensitive opsin 2 (SWS2). The wavelength of maximum absorbance (λmax) in LWS was 570.2 in short-beaked echidna (Tachyglossus aculeatus) and 560.6 nm in platypus (Ornithorhynchus anatinus); in SWS2, λmax was 451.7 and 442.6 nm, respectively. Thus, the spectral range in echidna color vision is ~ 10 nm longer overall than in platypus. Natural selection analysis showed that the molecular evolution of monotreme color opsins is generally functionally conserved, suggesting that these taxa rely on species-specific color vision. In order to understand the usage of color vision in monotremes, we made 24-h behavioral observations of captive echidnas at warm temperatures and analyzed the resultant ethograms. Echidnas showed cathemeral activity and various behavioral repertoires such as feeding, traveling, digging, and self-grooming without light/dark environment selectivity. Halting (careful) behavior is more frequent in dark conditions, which suggests that echidnas may be more dependent on vision during the day and olfaction at night. Color vision functions have contributed to dynamic adaptations and dramatic ecological changes during the ~ 60 million years of divergent monotreme evolution. The ethogram of various day and night behaviors in captive echidnas also contributes information relevant to habitat conservation and animal welfare in this iconic species, which is locally endangered.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer