Full text

Turn on search term navigation

Copyright © 2024 Qi Guo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

In this article, the inverse diffraction parabolic equation (IDPE) model based on the finite difference method is proposed, which is first applied in the multiple nonradiation targets orientation technology. In principle, the electromagnetic signal propagating in the transmission path will produce a reflected signal back to the source end while encountering the discontinuous objects. The distribution of the reflection or refraction intensity is directly associated with the distances and heights of the objects, so the location can be determined by means of analyzing the distribution. Here, according to the profile data of field intensity at the source end, the distribution of backward propagating electromagnetic waves are calculated rapidly by the IDPE. Then, the local extreme searching method is applied to search the coordinate of the convergence point of field intensity and the positions of multiple objects are finally determined. The piecewise linear function is used to model the irregular terrain. The influence of discontinuous terrain slopes on the false alarm probability of objects localization is also analyzed. The results show that the localization accuracy of the IDPE algorithm is affected by multiple factors, such as the radio frequency and sampling interval of field intensity. It is proved that the IDPE is a novel and efficient algorithm for multiple nonradiation targets orientation technology in long-range complicated terrain environment.

Details

Title
Multitargets Orientation Technique Based on Reflection Characteristic Analysis Using an Inverse Diffraction Parabolic Equation
Author
Guo, Qi 1   VIAFID ORCID Logo  ; Sun, Daozong 1 ; Li, Zhen 1 ; Lyu, Shilei 1 ; Xue, Xiuyun 1 

 Department of Electronic Engineering, South China Agricultural University, Guangzhou 510006, China 
Editor
Ayan Chatterjee
Publication year
2024
Publication date
2024
Publisher
John Wiley & Sons, Inc.
ISSN
16875869
e-ISSN
16875877
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2914320595
Copyright
Copyright © 2024 Qi Guo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/