It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but responses are short-lived due to rapid development of resistance. In this study we use a novel covalent tri-complex inhibitor, RMC-4998, that targets RASG12C in its active, GTP-bound form to investigate treatment of KRAS mutant lung cancer in various immune competent mouse models. While this RASG12C(ON) inhibitor was more potent than the KRASG12C(OFF) inhibitor adagrasib, rapid pathway reactivation was still observed. This could be delayed using combined treatment with a SHP2 inhibitor, RMC-4550, which not only impacted RAS pathway signalling within the tumour cells but also remodelled the tumour microenvironment (TME) to be less immunosuppressive and promoted interferon responses. In an inflamed, hot, mouse model of lung cancer, RASG12C(ON) and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory, which can also be induced by combination of RASG12C(ON) and PD-1 inhibitors. In contrast, in an immune excluded, cold, mouse model of lung cancer, combined RASG12C(ON) and SHP2 inhibition does not cause durable responses, but does sensitise tumours to immune checkpoint blockade, enabling efficient tumour rejection, accompanied by significant TME reorganization, including depletion of immunosuppressive innate immune cells and recruitment and activation of T and NK cells. These preclinical results demonstrate the potential of the combination of RASG12C(ON) inhibitors with SHP2 inhibitors to sensitize anti-PD-1 refractory tumours to immune checkpoint blockade by stimulating anti-tumour immunity as well as by targeting KRAS-driven proliferation in tumour cells.
Competing Interest Statement
J.D. has acted as a consultant for AstraZeneca, Jubilant, Theras, Roche and Vividion and has funded research agreements with Bristol Myers Squibb, Revolution Medicines and AstraZeneca. S.C.T has acted as a consultant for Revolution Medicines. C.B., E.Q. and J.A.M.S. are employees of Revolution Medicines. The other authors declare that they have no competing interests.
Footnotes
* In this revision, corrections have been made to the bibliography which contained errors in referencing. In addition, minor changes have been made to the methods and acknowledgement sections. The rest of the paper is unchanged.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer