It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The study aimed to identify the influential factors required to prepare landslide vulnerability maps and establish disaster prevention measures for mountainous areas with forest roads. The target area is Sancheok-myeon, Chungju-si, where several landslides have occurred in a narrow area of approximately 3 km × 4 km. As the area has the same rainfall and vegetation conditions, the influences of the physico-mechanical characteristics of the soil in accordance with compaction and topographic characteristics could be analyzed precisely.
Methods
Geological surveying, sampling, and laboratory testing assessed landslide risk in the study area, and data including unit weight, specific gravity, porosity, water content, soil depth, friction angle, cohesion, slope angle, profile/plan curvature, TWI were obtained. Preprocessing and screening such as min-max normalization and multicollinearity were conducted for the data in order to eliminate overestimation of each factor’s effectiveness. The influence of each factor was analyzed using logistic regression (LR), structural equation modeling (SEM), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM).
Results
All methods showed that soil depth has the greatest impact on landslide occurrence. Friction angle, slope angle, and porosity were also selected as influential factors, although each method ranked them slightly differently. Topographic factors, such as plan curvature, profile curvature, and the topographic wetness index, had minimal influence. This appears to be because landslides near forest roads are more affected by how well compaction was performed during banking than by the concave or convex shape of the slope. This study presents analysis results for an area with the same rainfall and vegetation conditions; therefore, the analysis of the influence of the physico-mechanical characteristics of the soil and topography was more precise than when comparing landslides occurring in different regions. Our results may be helpful in preparing landslide vulnerability maps.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chungbuk National University, Department of Earth and Environmental Sciences, Cheongju, South Korea (GRID:grid.254229.a) (ISNI:0000 0000 9611 0917)
2 Jeonnam Research Institute, Jeollanamdo Carbon Neutral Center, Naju, South Korea (GRID:grid.254229.a)
3 Chungbuk Research Institute, Chungcheongbuk-do Safety Research Institute, Cheongju, South Korea (GRID:grid.254229.a)
4 Chosun University, Department of Energy and Resources Engineering, Gwangju, South Korea (GRID:grid.254187.d) (ISNI:0000 0000 9475 8840)