Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The carrying capacity for vertical loads of well-maintained masonry arch bridges is reasonably high. This might not be the case for horizontal loads, the effects of which have not been the subject of extensive research aside from seismic occurrences. Arch bridges crossing rivers are subjected to sudden horizontal loads, due to river torrents, carrying debris from higher grounds. The magnitude of these horizontal loads is similar to those of coastal waves and debris; however, their effect on these structures has yet to be explored in detail. The narrow and high Devil’s Bridge across the Arda River (BG) and the wide, low Candia Viaduct across the Sesia River (I) were chosen as examples. Both are strongly exposed to fast-washing flow in the river during spring. FE simulations show that the impact of the rapidly rising river water influences the general stability, while the effect of debris mainly causes local damage. The results exhibit that tall, slender masonry arch structures fail due to the brittle fracture of the material, followed by the shear failure of a pier body. In contrast, lower and wider viaducts fail due to exaggerated tensile cracking in the upstream parts of a pier and the associated increasing pressure at its downstream parts.

Details

Title
The Effects of River Torrents and Debris on Historic Masonry Vaulted Arch Bridges
Author
Philippe Van Bogaert; De Backer, Hans  VIAFID ORCID Logo 
First page
54
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918550106
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.