Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recent advancements in studying long chains of unstable nuclei have revitalised interest in investigating the hyperfine anomaly. Hyperfine anomaly is particularly relevant for determining nuclear magnetic dipole moments using hyperfine structures where it limits the accuracy. This research paper focuses on the calculation of the differential Breit-Rosenthal effect for the 6p23P1,2, 1D2 and 6p7s3P1 states in Pb, utilising the multi-configurational Dirac-Hartree-Fock code, GRASP2018. The findings show that the differential Breit-Rosenthal effect is typically less than 0.1/fm2, which is often much smaller than the Bohr-Weisskopf effect. The differential Breit-Rosenthal effect for the 6p23P2 state is one order of magnitude smaller than the rest, which is why this state seems to be insensible to the hyperfine anomaly.

Details

Title
Calculation of the Differential Breit-Rosenthal Effect in Pb
Author
Karlsen, Martin Kinden; Persson, Jonas R  VIAFID ORCID Logo 
First page
5
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22182004
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918557512
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.