Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As learning analytics and educational data mining have become the “new normal” in the field, scholars have observed the emergence of data colonialism. Generally, data colonialism can be understood as the process by which data were considered “free” to take and appropriate. Building on this theoretical understanding, this study aims to contextualize data colonialism in educational technology by identifying and reviewing learning analytics studies that adopted a predictive analytics approach. We examined 22 studies from major educational technology journals and noted how they (1) see data as a resource to appropriate, (2) establish new social relations, (3) show the concentration of wealth, and (4) promote ideologies. We found evidence of data colonialism in the field of educational technology. While these studies may promote “better” ideologies, it is concerning how they justify the authorities capitalizing on “free” data. After providing a contextualized view of data colonialism in educational technology, we propose several measures to decolonialize data practices, adopting a postcolonialist approach. We see data colonialism not only as a privacy issue but also as a culture that must be challenged.

Details

Title
Deconstructing the Normalization of Data Colonialism in Educational Technology
Author
Lucas Kohnke 1   VIAFID ORCID Logo  ; Foung, Dennis 2   VIAFID ORCID Logo 

 Department of English Language Education, The Education University of Hong Kong, Tai Po, Hong Kong; [email protected] 
 School of Journalism, Writing, and Media, University of British Columbia, Vancouver, BC V6T 1Z2, Canada 
First page
57
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277102
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918726748
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.