Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of legume–rhizobial symbiosis results in the formation of nitrogen-fixing root nodules. In response to rhizobial molecules, Nod factors, signal transduction is mediated by the interaction of activated receptors with downstream signaling proteins. Previously, some new regulators of the signal pathway, such as phospholipases D, which regulate the level of phosphatidic acid (PA), as well as mitogen-activated protein kinases (MAPKs), have been identified in legumes. Since PA is an important signal messenger, we tested the hypothesis that increasing the level of proteins involved in the reversible binding of PA in plant tissues may have a positive effect on symbiosis. Our findings showed that overexpression of MtSPHK1-PA, encoding the PA-binding domain of sphingosine kinase 1 (SPHK1), stimulated plant growth and nodule development in legume plants. Furthermore, the influence of MAPK6 on the development of symbiosis was studied. Using genetic engineering methods, we increased MAPK6 transcriptional activity in transgenic roots, leading to an increase in the number of nodules and the biomass of pea plants. Therefore, new approaches to obtain plants with an increased efficiency of symbiosis were tested. We report here that both genes that encode signaling proteins may be used as potential targets for future modification using biotechnological approaches.

Details

Title
Genetically Modified Legume Plants as a Basis for Studying the Signal Regulation of Symbiosis with Nodule Bacteria
Author
Bovin, Andrey D; Dolgikh, Alexandra V  VIAFID ORCID Logo  ; Dymo, Alina M; Kantsurova, Elizaveta S  VIAFID ORCID Logo  ; Pavlova, Olga A; Dolgikh, Elena A  VIAFID ORCID Logo 
First page
9
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23117524
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918746124
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.