Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Epidemiological studies often encounter a challenge due to exposure measurement error when estimating an exposure–disease association. A surrogate variable may be available for the true unobserved exposure variable. However, zero-inflated data are encountered frequently in the surrogate variables. For example, many nutrient or physical activity measures may have a zero value (or a low detectable value) among a group of individuals. In this paper, we investigate regression analysis when the observed surrogates may have zero values among some individuals of the whole study cohort. A naive regression calibration without taking into account a probability mass of the surrogate variable at 0 (or a low detectable value) will be biased. We developed a regression calibration estimator which typically can have smaller biases than the naive regression calibration estimator. We propose an expected estimating equation estimator which is consistent under the zero-inflated surrogate regression model. Extensive simulations show that the proposed estimator performs well in terms of bias correction. These methods are applied to a physical activity intervention study.

Details

Title
Generalized Linear Models with Covariate Measurement Error and Zero-Inflated Surrogates
Author
Ching-Yun, Wang 1   VIAFID ORCID Logo  ; Jean de Dieu Tapsoba 2 ; Duggan, Catherine 1 ; McTiernan, Anne 1 

 Division of Public Health Sciences, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109-1024, USA; [email protected] (C.D.); [email protected] (A.M.) 
 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109-1024, USA; [email protected] 
First page
309
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918779882
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.