Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of satellite remote sensing technology, a substantial quantity of remote sensing data can be obtained every day, but the ability to extract information from these data remains poor, especially regarding intelligent extraction models for vegetation information in mountainous areas. Because the features of remote sensing images (such as spectral, textural and geometric features) change with changes in illumination, viewing angle, scale and spectrum, it is difficult for a remote sensing intelligent interpretation model with a single data source as input to meet the requirements of engineering or large-scale vegetation information extraction and updating. The effective use multi-source, multi-resolution and multi-type data for remote sensing classification is still a challenge. The objective of this study is to develop a highly intelligent and generalizable classification model of mountain vegetation utilizing multi-source remote sensing data to achieve accurate vegetation extraction. Therefore, a multi-channel semantic segmentation model based on deep learning, FCN-ResNet, is proposed to integrate the features and textures of multi-source, multi-resolution and multi-temporal remote sensing data, thereby enhancing the differentiation of different mountain vegetation types by capturing their characteristics and dynamic changes. In addition, several sets of ablation experiments are designed to investigate the effectiveness of the model. The method is validated on Mt. Taibai (part of the Qinling-Daba Mountains), and the pixel accuracy (PA) of vegetation classification reaches 85.8%. The results show that the proposed multi-channel semantic segmentation model can effectively discriminate different vegetation types and has good intelligence and generalization ability in different mountainous areas with similar vegetation distributions. The multi-channel semantic segmentation model can be used for the rapid updating of vegetation type maps in mountainous areas.

Details

Title
Mountain Vegetation Classification Method Based on Multi-Channel Semantic Segmentation Model
Author
Wang, Baoguo 1   VIAFID ORCID Logo  ; Yao, Yonghui 2   VIAFID ORCID Logo 

 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected]; University of Chinese Academy of Sciences, Beijing 100049, China 
 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 
First page
256
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918796660
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.