Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, it is necessary to maintain the quality of aquifers and water bodies, which means the need for sensors that detect molecules as emerging pollutants (EPs) at low concentrations in aqueous complex solutions. In this work, an electronic tongue (e-tongue) prototype was developed to detect 17β-estradiol in tap water. To achieve such a prototype, an array of sensors was prepared. Each sensor consists of a solid support with interdigitated electrodes without or with thin films prepared with graphene oxide, nanotubes, and other polyelectrolytes molecules adsorbed on them. To collect data from each sensor, impedance spectroscopy was used to analyze the electrical characteristics of samples of estrogen solutions with different concentrations. To analyze the collected data from the sensors, principal components analysis (PCA) method was used to create a three-dimensional plane using the calculated principal components, namely PC1 and PC2, and the estrogen concentration values. Then, damped least squares (DLS) was used to find the optimal values for the hyperplane calibration, as the sensitivity of this e-tongue was not represented by a straight line but by a surface. For the collected data, from nanotubes and graphene oxide sensors, a calibration curve for concentration given by the 10PC1×0.492−PC2×0.14–14.5 surface was achieved. This e-tongue presented a detection limit of 10−16 M of 17β-estradiol in tap water.

Details

Title
Graphene Oxide, Carbon Nanotubes, and Polyelectrolytes-Based Impedanciometric E-Tongue for Estrogen Detection in Complex Matrices
Author
Reis, Tiago 1   VIAFID ORCID Logo  ; Fino, Maria Helena 2 ; Raposo, Maria 3   VIAFID ORCID Logo 

 Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected]; Centre for Technology and Systems (LASI-CTS), UNINOVA, Department of Electrotechnical and Computer Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 
 Centre for Technology and Systems (LASI-CTS), UNINOVA, Department of Electrotechnical and Computer Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 
 Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 
First page
481
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918797636
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.