It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Visual hallucinations can be phenomenologically divided into those of a simple or complex nature. Both simple and complex hallucinations can occur in pathological and non-pathological states, and can also be induced experimentally by visual stimulation or deprivation—for example using a high-frequency, eyes-open flicker (Ganzflicker) and perceptual deprivation (Ganzfeld). Here we leverage the differences in visual stimulation that these two techniques involve to investigate the role of bottom-up and top-down processes in shifting the complexity of visual hallucinations, and to assess whether these techniques involve a shared underlying hallucinatory mechanism despite their differences. For each technique, we measured the frequency and complexity of the hallucinations produced, utilising button presses, retrospective drawing, interviews, and questionnaires. For both experimental techniques, simple hallucinations were more common than complex hallucinations. Crucially, we found that Ganzflicker was more effective than Ganzfeld at eliciting simple hallucinations, while complex hallucinations remained equivalent across the two conditions. As a result, the likelihood that an experienced hallucination was complex was higher during Ganzfeld. Despite these differences, we found a correlation between the frequency and total time spent hallucinating in Ganzflicker and Ganzfeld conditions, suggesting some shared mechanisms between the two methodologies. We attribute the tendency to experience frequent simple hallucinations in both conditions to a shared low-level core hallucinatory mechanism, such as excitability of visual cortex, potentially amplified in Ganzflicker compared to Ganzfeld due to heightened bottom-up input. The tendency to experience complex hallucinations, in contrast, may be related to top-down processes less affected by visual stimulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University College London, Experimental Psychology, Division of Psychology and Language Sciences, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201); University College London, Institute of Ophthalmology, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201)
2 Royal Holloway University, Department of Psychology, London, UK (GRID:grid.4970.a) (ISNI:0000 0001 2188 881X)
3 University College London, Experimental Psychology, Division of Psychology and Language Sciences, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201)