It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Generative adversarial networks (GANs) have rapidly emerged as powerful tools for generating realistic and diverse data across various domains, including computer vision and other applied areas, since their inception in 2014. Consisting of a discriminative network and a generative network engaged in a minimax game, GANs have revolutionized the field of generative modeling. In February 2018, GAN secured the leading spot on the ‘Top Ten Global Breakthrough Technologies List’ issued by the Massachusetts Science and Technology Review. Over the years, numerous advancements have been proposed, leading to a rich array of GAN variants, such as conditional GAN, Wasserstein GAN, cycle-consistent GAN, and StyleGAN, among many others. This survey aims to provide a general overview of GANs, summarizing the latent architecture, validation metrics, and application areas of the most widely recognized variants. We also delve into recent theoretical developments, exploring the profound connection between the adversarial principle underlying GAN and Jensen–Shannon divergence while discussing the optimality characteristics of the GAN framework. The efficiency of GAN variants and their model architectures will be evaluated along with training obstacles as well as training solutions. In addition, a detailed discussion will be provided, examining the integration of GANs with newly developed deep learning frameworks such as transformers, physics-informed neural networks, large language models, and diffusion models. Finally, we reveal several issues as well as future research outlines in this field.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Science and Engineering, Sorbonne University , Abu Dhabi, United Arab Emirates; Sorbonne Center for Artificial Intelligence, Sorbonne University , Paris, France
2 School of Computer Science and Engineering, VIT-AP University , Amaravati, Andhra Pradesh, India
3 Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education , Manipal 576104, Karnataka, India
4 Center for Data Sciences, International Institute of Information Technology Bangalore , Bangalore, India