Abstract

Identifying patients who would benefit from extensive catheter ablation along with pulmonary vein isolation (PVI) among those with persistent atrial fibrillation (AF) has been a subject of controversy. The objective of this study was to apply uplift modeling, a machine learning method for analyzing individual causal effect, to identify such patients in the EARNEST-PVI trial, a randomized trial in patients with persistent AF. We developed 16 uplift models using different machine learning algorithms, and determined that the best performing model was adaptive boosting using Qini coefficients. The optimal uplift score threshold was 0.0124. Among patients with an uplift score ≥ 0.0124, those who underwent extensive catheter ablation (PVI-plus) showed a significantly lower recurrence rate of AF compared to those who received only PVI (PVI-alone) (HR 0.40; 95% CI 0.19–0.84; P-value = 0.015). In contrast, among patients with an uplift score < 0.0124, recurrence of AF did not significantly differ between PVI-plus and PVI-alone (HR 1.17; 95% CI 0.57–2.39; P-value = 0.661). By employing uplift modeling, we could effectively identify a subset of patients with persistent AF who would benefit from PVI-plus. This model could be valuable in stratifying patients with persistent AF who need extensive catheter ablation before the procedure.

Details

Title
Uplift modeling to identify patients who require extensive catheter ablation procedures among patients with persistent atrial fibrillation
Author
Sato, Taiki 1 ; Sotomi, Yohei 1 ; Hikoso, Shungo 1 ; Kitamura, Tetsuhisa 2 ; Nakatani, Daisaku 1 ; Okada, Katsuki 3 ; Dohi, Tomoharu 1 ; Sunaga, Akihiro 1 ; Kida, Hirota 1 ; Matsuoka, Yuki 1 ; Tanaka, Nobuaki 4 ; Watanabe, Tetsuya 5 ; Makino, Nobuhiko 6 ; Egami, Yasuyuki 7 ; Oka, Takafumi 8 ; Minamiguchi, Hitoshi 9 ; Miyoshi, Miwa 10 ; Okada, Masato 4 ; Kanda, Takashi 11 ; Matsuda, Yasuhiro 12 ; Kawasaki, Masato 13 ; Masuda, Masaharu 12 ; Inoue, Koichi 14 ; Sakata, Yasushi 1 ; Mano, Toshiaki 12 ; Fukunami, Masatake 13 ; Yamada, Takahisa 13 ; Furukawa, Yoshio 13 ; Hasegawa, Shinji 10 ; Higuchi, Yoshiharu 6 ; Hirata, Akio 6 ; Tanouchi, Jun 7 ; Nishino, Masami 7 ; Matsunaga, Yasuharu 7 ; Matsumura, Yasushi 1 ; Mizuno, Hiroya 1 ; Takeda, Toshihiro 1 ; Nakano, Tomoaki 1 ; Ozu, Kentaro 1 ; Suna, Shinichiro 1 ; Oeun, Bolrathanak 1 ; Tanaka, Koji 4 ; Minamisaka, Tomoko 15 ; Hoshida, Shiro 15 

 Osaka University Graduate School of Medicine, Department of Cardiovascular Medicine, Suita, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971) 
 Osaka University Graduate School of Medicine, Department of Social and Environmental Medicine, Suita, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971) 
 Osaka University Graduate School of Medicine, Department of Cardiovascular Medicine, Suita, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971); Osaka University Graduate School of Medicine, Department of Transformative System for Medical Information, Suita, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971) 
 Sakurabashi Watanabe Hospital, Cardiovascular Center, Osaka, Japan (GRID:grid.416720.6) (ISNI:0000 0004 0409 6927) 
 Osaka General Medical Center, Division of Cardiology, Osaka, Japan (GRID:grid.416985.7) (ISNI:0000 0004 0378 3952); Yao Municipal Hospital, Department of Cardiovascular Medicine, Yao, Japan (GRID:grid.517853.d) 
 Osaka Police Hospital, Cardiovascular Division, Osaka, Japan (GRID:grid.416980.2) (ISNI:0000 0004 1774 8373) 
 Osaka Rosai Hospital, Division of Cardiology, Sakai, Japan (GRID:grid.417001.3) (ISNI:0000 0004 0378 5245) 
 Osaka University Graduate School of Medicine, Department of Cardiovascular Medicine, Suita, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971); Sakurabashi Watanabe Hospital, Cardiovascular Center, Osaka, Japan (GRID:grid.416720.6) (ISNI:0000 0004 0409 6927) 
 Osaka University Graduate School of Medicine, Department of Cardiovascular Medicine, Suita, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971); Osaka Police Hospital, Cardiovascular Division, Osaka, Japan (GRID:grid.416980.2) (ISNI:0000 0004 1774 8373) 
10  Japan Community Healthcare Organization, Department of Cardiology, Osaka Hospital, Osaka, Japan (GRID:grid.460248.c) 
11  Osaka Police Hospital, Cardiovascular Division, Osaka, Japan (GRID:grid.416980.2) (ISNI:0000 0004 1774 8373); Kansai Rosai Hospital, Cardiovascular Center, Amagasaki, Japan (GRID:grid.414976.9) (ISNI:0000 0004 0546 3696) 
12  Kansai Rosai Hospital, Cardiovascular Center, Amagasaki, Japan (GRID:grid.414976.9) (ISNI:0000 0004 0546 3696) 
13  Osaka General Medical Center, Division of Cardiology, Osaka, Japan (GRID:grid.416985.7) (ISNI:0000 0004 0378 3952) 
14  Sakurabashi Watanabe Hospital, Cardiovascular Center, Osaka, Japan (GRID:grid.416720.6) (ISNI:0000 0004 0409 6927); National Hospital Organization Osaka National Hospital, Cardiovascular Division, Osaka, Japan (GRID:grid.417136.6) (ISNI:0000 0000 9133 7274) 
15  Yao Municipal Hospital, Yao, Japan (GRID:grid.517853.d) 
Pages
2634
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2920960179
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.