It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
DEPLOY! Project aims at analysing the behaviour of Deployable Pulsating Heat Pipe (PHP) shaped as a helicoidal torsional spring in the adiabatic section on board a Parabolic Flight platform. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. The microgravity environment allows to eliminate the buoyancy force contribution in the liquid phase momentum. Consequently, it is possible to isolate the contribution of the pressure drop caused by the 3D arrangement and infer on their effect on the PHP performance. As a result, a proper design based on the previous considerations would increase the flexibility of the PHP for use in space applications without significant reductions in efficiency. The goal of DEPLOY! is to demonstrate the functionality of a Deployable Pulsating Heat Pipe in various unfolding configurations by analysing its thermal-hydraulic response throughout a Parabolic Flight. The presented Deployable PHP is composed of an aluminium tube (inner/outer diameters 1.6mm/2.6 mm) and filled with HFE-7000. It is heated at the evaporator using a flat heater and cooled at the condenser with a water-cooled cold plate. T-type thermocouples are used to measure the wall temperature in several locations, while two pressure transducers (one located in the evaporator section and another in the condenser section of the same pipe) measure the local fluid pressure. Additionally, an IR Camera will be used to observe a section of the pipe for further analysis of the flow frequency. The device operation will be tested on ground and 0-g at different heat loads (24W, 34W), in multiple static positions corresponding to different opening angles (0°, 45°, 90°, 135°, 180°) and during its dynamic opening from 0° to 180°, thanks to a remotely controllable motion system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of industrial engineering, University of Pisa , Pisa , Italy
2 Department of Energy, Systems Land and Construction Engineering, University of Pisa , Pisa , Italy
3 Department of information engineering, University of Pisa , Pisa , Italy
4 School of architecture, technology and engineering, University of Brighton , Brighton , UK
5 Department of Engineering and Architecture, University of Parma , Parma , Italy