Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Some continuous discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and early-operational phases (2015–present) are marked by anomalies related to sensor drift, gauge movement, and incomplete rating curves. Here, we investigate the potential to estimate continuous discharge when discrete streamflow measurements are available at the site of interest. Using field-measured discharge as truth, we reconstructed continuous discharge for all 27 NEON stream gauges via linear regression on nearby donor gauges and/or prediction from neural networks trained on a large corpus of established gauge data. Reconstructions achieved median efficiencies of 0.83 (Nash–Sutcliffe, or NSE) and 0.81 (Kling–Gupta, or KGE) across all sites and improved KGE at 11 sites versus published data, with linear regression generally outperforming deep learning approaches due to the use of target site data for model fitting rather than evaluation only. Estimates from this analysis inform 199 site-months of missing data in the official record, and can be used jointly with NEON data to enhance the descriptive and predictive value of NEON's stream data products. We provide 5 min composite discharge series for each site that combine the best estimates across modeling approaches and NEON's published data. The success of this effort demonstrates the potential to establish “virtual gauges”, sites at which continuous streamflow can be accurately estimated from discrete measurements, by transferring information from nearby donor gauges and/or large collections of training data.

Details

Title
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
Author
Vlah, Michael J 1 ; Ross, Matthew R V 2 ; Spencer, Rhea 1   VIAFID ORCID Logo  ; Bernhardt, Emily S 1 

 Department of Biology, Duke University, Durham, USA 
 Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, USA 
Pages
545-573
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2923223447
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.